
Chapter 1

[21]

You can find more information about each of these techniques online via the list of
references I have provided. There is a lot of online as well as offline text available
on these methodologies. I personally prefer SCRUM development, which is a Chaos
Theory based approach. In SCRUM, we have sprint, which is an iteration with a
certain number of days (for example, 30) at the end of which the development team
covers a certain set of use cases and lets the stakeholders see and test the application.
During the next iteration, they cover more features, which are prioritized
accordingly. Each iteration passes through a full software development cycle:
planning, requirements, design, coding, testing, and documentation. The goal is to
have an available release (without bugs) at the end of each iteration.

A major goal to be achieved by using this process is to allow the client to take their
new product to market before it is completed in its entirety. We are also minimizing
risk by developing highly-focused components in a short period of time. This
development process will continue throughout all phases, promoting the release of
components to a beta phase in a live environment as the life cycles are completed.
The following are the major benefits or principles of the SCRUM method:

Keeping things simple by chunking (or batching)
Customer satisfaction through rapid, continuous delivery of useful software
they can get their hands on
Working software is delivered frequently (taking weeks rather than months)
Working software is the primary measure of progress
Late changes or additions in requirements are welcome and can be added to
iterations with ease
Close, daily cooperation between clients and developers
Continuous attention to technical excellence and good design
Regular adaptation to changing circumstances

Because the stakeholders can see and review the current application at the end of
each sprint, it gives them a valuable opportunity to change anything they don't like.
Changes made at a later stage (such as when all use cases are covered) would
take a longer time to absorb into the application, and can sometimes derail the
project completely.

Project Transition and Release
At the end of the last iteration, the project will be in alpha stage, which means that all
of the main use cases are implemented. The alpha build of the software is the build
delivered to the software testers, usually internal to the organization/community
developing the software. Usually, no end users see this phase. Alpha stage software
is never completely bug free, but functionally covers all use cases.

•
•

•
•
•

•
•
•

Introduction to Architecture and Design

[22]

Once the alpha testing is over, the project moves to the beta phase, which means that
external users/end users (outside the company or organization that developed the
software) can now start checking the system and using it.

A beta version is the first version released outside of the organization or community
that developed the software, for the purpose of evaluation or real-world testing. Beta
level software generally includes all of the features, but may also include known
issues and bugs of a less serious variety. Once the beta phase is over and all major
bugs have been fixed, the project is in an RTM (Release To Manufacture) stage, or in
the Gold Edition.

The following is a summary table showing all of the important project phases:

Project Stages Project Pitfalls

1. Initiation: Understanding project
needs from a very high-level
perspective and conducting a
small feasibility study

A poor feasibility study can hinder or block
project progress later on; it is very important
to see what really can be achieved and what
cannot, given the current technological
offerings

2(a) Planning: Understand the
project needs comprehensively,
develop business use cases,
detailed project plan, high-level
architecture, class diagrams,
data model, sequence diagrams,
prototype

Detailed planning and project management is
the key here; without a well laid out plan the
project is doomed to fail. Wrong estimates or
an improper choice of architecture can sound
the death knell for the project's progress

2(b) Development: Work iteratively
on selected use cases, QA process
follows

Lack of unit tests, deviations in architecture,
patching and short circuiting code to avoid
missing deadlines

3. Transition: Beta testing, release
docs, deployment instructions,
bug fixing

Without proper usability and integration
testing, success is not possible

4. Support: Provide support after the
Gold/RTM release Good support is very crucial

Tiers and Layers
There is a misunderstanding that tier and layers are two different names for the same
entity. The concept of tier and layers came into being with the need for identifying
and segregating different parts of an application into separate connected components.
This separation can be at two levels:

Physical Separation
Logical Separation

•
•

